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Abstract

Significant progress has been made recently in the automation and standardization of ab
initio point defect calculations in the form of improved formation energy corrections for charged
defects and workflow software to aid in calculation setup and post-processing. However, the task
of developing, implementing, and benchmarking charge corrections for density functional theory
(DFT) point defect calculations is still an open challenge. To contribute to this goal, a parallelized
Python and C package called pawpyseed is developed to perform numerical analysis of DFT
wavefunctions in the projector augmented wave (PAW) formalism. The utilities contained in the
code can be used to perform perturbative band shifting corrections for point defect calculations.
The theory and implementation of pawpyseed for this application is discussed, and other potential
applications of the code are mentioned briefly in the discussion. In addition, various correction
methods, including a perturbative band shifting method implemented using pawpyseed, are
used to calculate the formation energies and transition levels of several point defects in silicon
(phosphorous, boron, sulfur, and copper substitutionals and the single vacancy). The transition
level predictions are compared to each other as well as previous experimental and theoretical data.
A discussion of the correction methods is presented in the context of the studied defects, and
hypotheses are presented for errors for different correction methods. Possible future developments
of corrections for high-throughput point defect calculation workflows are discussed.
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1 Introduction

Point defects play a defining role in materials science, particularly electronics [1]. For example, a
thorough understanding of phosphorous and boron doping in silicon were essential to the discovery of
the p-n junction, a fundamental component of modern electronics. More recently, rapid progress has
been made in halide perovskite solar cell efficiency partly because the defects in halide perovskites
are unusually benign toward electronic properties [2].

Experimental studies of point defects often provide limited information about defect type and
composition [3], so it is informative to determine the properties of defects using electronic structure
simulations such as Kohn-Sham density functional theory (DFT) [4]. In addition, achieving high
accuracy of ground state energies is critical because the concentration of a defect in a crystal, a
primary property of interest, scales exponentially with the defect’s formation energy. Developing
high-throughput models is particularly useful for point defects because setting up and parsing point
defect calculations is time-consuming and complicated to do manually. Automation can make these
methods accessible to industrial scientists and therefore accelerate their research.

One of the key hurdles to high-throughput calculation of defect properties is the “band-gap
problem,” in which local and semi-local DFT significantly underestimate the band gaps of solids [3].
Since discrete defect levels (the single-particle states introduced by a defect in a solid) are located
in the band gap, this band-gap problem results in inaccurate defect properties in simulations. One
proposed solution to this problem is to use perturbation theory to shift the band edges from a DFT
calculation to improve the accuracy of the predicted defect properties.

In this work, a DFT post-processing software package called pawpyseed is presented with the
goal of making the implementation of perturbative band shifting corrections easier. The rest of this
section gives an overview of current work in DFT point defect calculations and correction methods
(1.1 and 1.2) and then provides a brief background on the challenges addressed by pawpyseed (1.3
and 1.4). The tools in pawpyseed are centered around the evaluation of overlap operator expectation
values between wavefunctions from defect structures and wavefunctions from bulk structures. Section
2 describes the theoretical formalism for these overlap operators and presents a simple perturbative
band shifting correction. Section 3 gives an implementation and runtime scaling analysis. Section
4 provides computational details for the DFT study of silicon point defects in this work. Section
5 presents predictions of transition levels and formation energies for these defects using several
correction methods, including a newly implemented band shifting correction. Section 6 discusses the
performance of different correction methods, as well as possible future applications of the pawpyseed
code. Section 7 contains concluding remarks.

1.1 The Supercell Method for Point Defects

Most first principles studies of point defects use the supercell method: The point defect is embedded
in a supercell of the bulk structure, which is repeated infinitely throughout space and modeled with
DFT. This method allows point defects to be modeled in robust, high-performance plane-wave DFT
codes, but it also raises several problems. First, the periodic boundary conditions cause unphysical
elastic and electronic interactions of the defect with periodic images of itself (finite-size effects).
Second, typical DFT functionals drastically underestimate material band gaps due to inaccurate
correlation effects, resulting in unrealistic delocalization of electron density [1, 3]. The former
problem is generally addressed with finite-size corrections that subtract unphysical interactions
out of the total energy, but these corrections break down when electron charge is unrealistically
delocalized [5]. The delocalization issue is generally circumvented using hybrid functional methods,
which correct the band gap but are too computationally expensive for high-throughput applications.
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In addition, the behavior of defect levels in hybrid is nontrivially influenced by mixing parameters
which are difficult to tune and not always physically justified [6, 7]. Therefore, high-throughput
defect calculation workflows use DFT and then attempt to correct the resulting physical inaccuracies
using post-processing tools.

In the supercell method formalism, the formation energy of a defect X in a charge state q is
given by [8]:

Ef [Xq] = Etot[X
q]− Etot[bulk]−

∑
i

niµi + qEF + Ecorr (1)

where Etot is the total energy of a DFT calculation, ni is the change in number of each specie
(chemical element) from the bulk structure to the defect structure, µi is the chemical potential of
each specie, EF is the Fermi level, and Ecorr contains correction terms.

The correction for electrostatic interaction of the defect with itself is generally performed using
the Freysoldt [9] method or Kumagai [10] method. The Freysoldt method is used in this study. The
Freysoldt method defines

Ecorr = −Elatq + q∆q/b (2)

Elatq is the electrostatic interaction of the defect charge with periodic images of itself, and ∆q/b

is a correction to the potential that removes the compensating background charge introduced in
non-charge-neutral DFT calculations. (Because electrostatic energy of a periodic system diverges
if each unit cell has a net charge, periodic DFT codes add a compensating background charge to
make the system neutral if the number of electrons does not equal the number of protons in the
system). See Freysoldt and Van de Walle [1] for details.

Another common correction is the band filling correction [3]. Because defects are localized
features in a crystal, bands introduced by a defect should be dispersionless (i.e. have the same
energy at each k-point). However, the periodicity of the system in the supercell method can cause
dispersion in defect bands, which means shallow defects can introduce holes below the valence
band maximum (VBM) and electrons above the conduction band minimum (CBM) in DFT. This
cannot occur in a real system because a hole below the VBM will rise to the VBM, and an electron
above the CBM will relax to the CBM. Band filling corrections, such as the one in PyCDT [8] and
pymatgen [11], shift energy levels associated with defects to remove dispersion of defect levels above
the CBM and below the VBM. For example, if a conduction band state of energy Ed,k is occupied
at k-point k, then the term ωk(ECBM − Ed,k) is added to Ecorr in Equation 1, where ωk is the
k-point weight.

The final correction is the band shifting correction, which attempts to correct for the inaccuracy
of the band gap for the generalized gradient approximation (GGA) and other semi-local functionals
[3]. The general approach is to calculate accurate band edges of the bulk crystal using a higher level
of theory, such as hybrid DFT, and then correct the defect energy based on the band edge shifts:

∆ECBM = ECBM,hybrid − ECBM,GGA (3)

∆EV BM = EV BM,hybrid − EV BM,GGA (4)

Hybrid indicates that the band edges were calculated using a hybrid DFT level of theory, which
generally gives better band gaps than semi-local DFT. GGA indicates the band edges were calculated
with the GGA functional.

The most basic band shifting correction, which will be called the “100% shift” method, has three
terms to be added to Ecorr. The first is q∆EV BM , which serves as an effective shift to the Fermi
level in Equation 1 since the Fermi level is referenced to the VBM [3]. The second is ∆ECBM times
the number of electrons in the conduction band, as these electrons are assumed to shift in energy
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100% with the conduction band. Third, −∆EV BM times the number of holes in the valence bands
accounts for shifting hole energy. One can imagine the third term as subtracting the energy term
that would arise if electrons occupied the unfilled valence states.

The 100% shift correction is relatively rudimentary because it is possible that not all levels shift
entirely with the valence or conduction band. For example, a defect level described completely by
an atomic state on a defect atom should not shift with the valence or conduction bands between the
GGA and hybrid levels of theory. However, due to the underestimation of the band gap in GGA,
such a level may be located above the CBM or below the VBM in GGA and therefore be incorrectly
shifted by the 100% shift method. In addition, states in the band gap do not get shifted, even
though a shallow defect level near a band edge might shift with the band edge. A more sophisticated
band shifting method based on perturbation theory has been proposed [3] and is discussed presently.

1.2 The Perturbative Band Shifting Correction

Throughout this section, Kohn-Sham single-particle states, which are the eigenfunctions of the
Kohn-Sham DFT Hamiltonian, will be referred to as wavefunctions for brevity. However, it is
important to note that these states are not unique and only physically significant because they
generally give good approximations to single-particle ionization energies, which allows them to be
treated as orbitals occupied by a single electron (or electron pair) in an effective potential. Because
the eigenfunctions of a Hamiltonian form a complete basis, a defect wavefunction can be expanded
in the bulk wavefunctions [3]:

ψD(r) =
∑
n,k

〈ψn,k|ψD〉ψn,k(r) =
∑
n,k

An,kψn,k(r) (5)

ψD is a defect wavefunction, and ψn,k are evaluated in the pristine bulk. Physically, ψD is a single
state, as opposed to a band of states in k-space, because the defect is not periodic and therefore
does not have dispersion. However, it is evaluated at different k-points in the supercell method, so
the supercell method defect levels ψD,k will be used to ground the band shifting correction in a
practical computational framework. Since all wavefunctions at different k-points are orthogonal,

ψD,k(r) =
∑
n

An,kψn,k(r) (6)

If the single-particle energy level of ψD,k(r) in DFT is e0
D,k, first-order perturbation theory can be

used as suggested by Lany and Zunger to calculate a corrected energy [3].

eD,k = e0
D,k + 〈ψD,k(r)|∆H |ψD,k(r)〉 (7)

Here, ∆H is a correction term that extrapolates from the DFT picture to the true quasiparticle
energies. Assuming the diagonal elements of ∆H in the basis of the bulk wavefunctions are small,
Equation 7 can be expanded:

eD,k = e0
D,k +

∑
n

|An,k|2 〈ψn,k(r)|∆H |ψn,k(r)〉 (8)

A rough but potentially useful approximation to ∆H is a “band shifting” operator that shifts
the energy of a bulk conduction band by ∆ECBM (Equation 3) and the energy of a bulk valence
band by ∆EV BM (Equation 4). This band shifting operator therefore shifts the energy levels of a
defect system calculated in GGA toward the more accurate hybrid energy levels based on how they
project onto host bands.
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It is useful to define the “proportion valence” vD,k and “proportion conduction” cD,k as:

vD,k ≡
∑
n∈V B

| 〈ψD,k|ψn,k〉 |2 (9)

cD,k ≡
∑
n∈CB

| 〈ψD,k|ψn,k〉 |2 (10)

Here, VB is the set of valence bands and CB is the set of conduction bands. Using these definitions,
Equation 8 can be expressed simply:

eD,k =e0
D,k + cD,k∆ECBM + vD,k∆EV BM (11)

This perturbative method assumes that the difference in exchange-correlation (XC) energy of an
electron in a single-particle state between hybrid and GGA is similar in both the bulk and defect
structures. A second assumption made for the simplified perturbative method above is that this
change in XC energy is equal for all valence bands and all conduction bands.

This correction is of interest because it has been proposed in multiple cases [1, 3, 12] but does
not have a standard formalism or open-source implementation. This is partly because the accurate
evaluation of the overlap terms 〈ψD,k|ψn,k〉 is computationally difficult in plane-wave DFT with
the projector-augmented wave (PAW) method, which is the most commonly used basis set for
modern periodic solid calculations. Understanding why this is requires a basic introduction to PAW
wavefunctions, which is outlined in the next subsection.

1.3 The Projector Augmented Wave (PAW) Method

It is ideal to use plane waves of the form eik·r as a basis set for the wavefunctions of periodic crystals
because they can be manipulated quickly using fast Fourier transforms (FFTs), leading to fast
algorithms for Hamiltonian diagonalization and potential calculation. However, the atomic valence
states of atoms have frequency components of tens of thousands of electron volts (eV) near the
nucleus because the electrostatic potential is large and discontinuous. Describing these valence states
with plane waves would lead to a prohibitively large basis set, so a transformation T is introduced
which maps a pseudo (PS) wavefunction, which is a smooth sum of plane waves, to an all electron
(AE) wavefunction, which describes the true eigenfunction of the KS Hamiltonian [13].

T = 1 +
∑
a

∑
l

∑
m

∑
ε

(|φalmε〉 − |φ̃almε〉) 〈p̃almε| = 1 +
∑
i

(|φi〉 − |φ̃i〉) 〈p̃i| (12)

φalmε are all electron (AE) partial waves, φ̃almε are pseudo (PS) partial waves, p̃almε are projector
functions, a are the site indices of each atom in the structure, and l, m, and ε specify a spherical
harmonic and energy quantum number which uniquely specify a partial wave at a given atomic
site. Projector functions are localized within a cutoff radius rc around the nucleus of an atom, and
φ̃almε = φalmε outside an augmentation radius ra. AE partial waves form a basis for the atomic
valence states inside rc. PS partial waves form a basis for the PS wavefunction inside rc. Projector
functions determine how the PS wavefunction maps to the AE wavefunction. A summation over i
(or j, as below) represents a summation over a, l, m, and ε. For further details on the PAW method,
including the physical significance and construction of the partial waves and projector functions, see
Blochl’s original paper [13] and Kresse and Joubert’s paper relating ultrasoft pseudopotentials and
PAW [14]. For the purpose of this work, the primary concern is the form of PAW wavefunctions and
how operators are evaluated in this formalism, rather than the exact method by which the PAW
datasets are constructed and how the Hamiltonian is diagonalized.
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When T is applied to a PS wavefunction |ψ̃nk〉, the AE wavefunction |ψnk〉 is recovered.

|ψnk〉 = |ψ̃nk〉+
∑
a,l,m,ε

(|φalmε〉 − |φ̃almε〉) 〈p̃almε|ψ̃nk〉 (13)

To evaluate operators, one defines a pseudo operator Ã for each operator A such that 〈ψ|A |ψ〉 =
〈ψ̃| Ã |ψ̃〉. Because |ψ〉 = T |ψ̃〉, one can write [13]:

Ã = T †AT (14)

One can then plug Equation 12 into Equation 14 to find

Ã =[1 +
∑
i

|p̃i〉 (〈φi| − 〈φ̃i|)]A[1 +
∑
j

(|φj〉 − |φ̃j〉) 〈p̃j |] (15)

Ã =A+
∑
i

|p̃i〉 (〈φi| − 〈φ̃i|)A+
∑
j

A(|φj〉 − |φ̃j〉) 〈p̃j | (16)

+
∑
i

∑
j

|p̃i〉 (〈φi| − 〈φ̃i|)A(|φj〉 − |φ̃j〉) 〈p̃j |

When the operator A is local, then
∑

j |φ̃j〉 〈p̃j | = 1, which reduces Equation 16 to a simpler form
for local operators [13]:

Ã = A+
∑
i

∑
j

|p̃i〉 (〈φi|A |φj〉 − 〈φ̃i|A |φ̃j〉) 〈p̃j | (17)

1.4 Implementing overlap operators in pawpyseed

At first glance at Equation 17, it seems that the overlap operator should be evaluated as any local
operator is evaluated in PAW. However, the basis of a PAW wavefunction is structure dependent
because the partial waves and projector function are dependent on the atomic composition and
positions. For the unusual application described here, where the wavefunctions for which the overlap
operator is desired belong to two different structures, it is necessary to evaluate Equation 16 in
full, where i and j sum over the sites of the two different structures. Figure 1 illustrates how the
augmentation regions interact for the evaluation of overlap operators of wavefunctions from different
structures.

Another difficulty that arises from evaluating overlap operators is that DFT codes generally
reduce the number of k-points sampled using symmetry operations. In general, defect structures
will have lower symmetry than bulk structures, so the wavefunctions for the two structures will be
evaluated at different sets of k-points. It is therefore necessary to extrapolate wavefunctions at one
k-point from wavefunctions at a symmetrically identical k-point in order to perform all the desired
overlap operator evaluations.

The theory section addresses these two problems so that pawpyseed can implement the evaluation
of the overlap operators required for the perturbative band shifting correction.

2 Theory

This section develops the overlap operator formalism and mapping between symmetrically identical
k-points used in pawpyseed. In addition, a simple perturbative band-shifting correction is presented.
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Figure 1: A schematic diagram of the augmentation regions for a crystal in 2D. The colored regions
represent the augmentation regions of a wavefunction, which are defined by the crystal structure.
Orange and yellow are one element, and purple and blue are a different element. On the left, two bulk
states are projected onto each other, and the augmentation regions overlap exactly. This means that
integrals of the partial waves can be calculated on simple radial grids. On the right, a defect state is
projected onto a bulk state. As shown, augmentation regions now overlap nonconcentrically, which
prevents easy radial integration, and augmentation regions overlap with the interstitial region, which
requires that the high-frequency AE partial waves be projected onto the smooth PS wavefunction.
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2.1 Overlap Operators in PAW for Wavefunctions from Different Structures

The following section derives an equation for the overlap operator between one Kohn-Sham single
particle state of one structure R and one Kohn-Sham single particle state of another structure S,
where R and S share a common lattice and the DFT PS wavefunctions are constructed with the
same plane-wave basis set in the PAW formalism. The goal of this derivation is to present this
overlap operator in a form convenient for computation.

Starting with Equation 16 for any single-particle operator in the PAW formalism and replacing
A with unity gives the overlap operator (note that the summation over i is for structure R and the
summation over j is for structure S):

〈ψRn1k|ψSn2k〉 = O0 +O1 +O2 +O3

O0 = 〈ψ̃Rn1k|ψ̃Sn2k〉

O1 =
∑
i

〈ψ̃Rn1k|p̃i〉 (〈φi| − 〈φ̃i|) |ψ̃Sn2k〉

O2 =
∑
j

〈ψ̃Rn1k| (|φj〉 − |φ̃j〉) 〈p̃j |ψ̃Sn2k〉

O3 =
∑
i

∑
j

〈ψ̃Rn1k|p̃i〉 (〈φi| − 〈φ̃i|)(|φj〉 − |φ̃j〉) 〈p̃j |ψ̃Sn2k〉

(18)

It is important to simplify the calculation of the other terms in equation 18 as much as possible
because the calculation can be computationally expensive, and the number of necessary calculations
for projecting onto an entire basis set can scale with the number of sites times the size of the basis
set. One major simplification is that if a site a in structure R and site b in structure S have the
same species and position, a and b will only have overlapping augmentation regions with each other
and no other sites. Then, defining O1a as the summation over on-site terms for the identical sites a
and b in O1 (and using like definitions for O2a and O3a):

O1a +O2a +O3a =
∑
l,m

∑
ε1

∑
ε2

〈ψ̃Rn1k|p̃almε1〉 (〈φalmε1 |φalmε2〉 − 〈φ̃almε1 |φ̃almε2〉) 〈p̃almε2 |ψ̃Sn2k〉

which is the local operator solution derived by Blochl. All three terms must be evaluated in full for
the other sites, but terms in O3 where i and j correspond to sites with non-overlapping augmentation
spheres vanish. Therefore, if MRS is the set of identical sites in the structures R and S, NR and NS

are the sets of sites in R and S not in MRS , and NRS is the set of pairs of sites not in MRS with
overlapping augmentation regions, then

〈ψRn1k|ψSn2k〉 = O0 +OM +OR +OS +ON (19)

OM =
∑

i,j∈MRS

〈ψ̃Rn1k|p̃i〉 (〈φi|φj〉 − 〈φ̃i|φ̃j〉) 〈p̃j |ψ̃Sn2k〉 (20)

OR =
∑
i∈NR

〈ψ̃Rn1k|p̃i〉 (〈φi| − 〈φ̃i|) |ψ̃Sn2k〉 (21)

OS =
∑
j∈NS

〈ψ̃Rn1k| (|φj〉 − |φ̃j〉) 〈p̃j |ψ̃Sn2k〉 (22)

ON =
∑

i,j∈NRS

〈ψ̃Rn1k|p̃i〉 (〈φi| − 〈φ̃i|)(|φj〉 − |φ̃j〉) 〈p̃j |ψ̃Sn2k〉 (23)

8



2.2 Mapping Pseudo Wavefunctions Between Symmetrically Identical K-points

Since changing the basis of a lattice (atoms and atomic positions) can change the space group, and
because DFT calculations reduce the k-point sampling space based on symmetry operations, it is
important for a code which calculates overlap operators of wavefunctions from different structures
to be able to derive a wavefunction at one k-point from a wavefunction at a symmetrically identical
k-point. Two k-points k and k′ are symmetrically identical if k′ = Θk, where Θ is the non-translation
component of a space group operation R = TΘ of the crystal, where T is the translation. For
nonmagnetic systems, they are also symmetrically identical if related by time inversion (τ : t→ −t).

Because R commutes with H, the above condition guarantees that

Hψnk = Enkψnk (24)

HRψnk = EnkRψnk (25)

Since the k-point of Rψnk is k′, the eigenfunctions at k′ can be specified as:

ψnk′ = Rψnk (26)

Next, the wavefunctions are expressed as a sum of plane waves:

ψnk(r) =

√
1

V
eik·r

∑
G

Cn,k,Ge
iG·r (27)

Plugging Equation 27 into Equation 26 and taking T = ∆r to be the translational component of R,
a condition on the plane-wave constants can be derived as shown:

eik·r
∑
G

Cn,k,Ge
iG·r = eiΘk·(Θr+∆r)

∑
G

Cn,Θk,Ge
iG·(Θr+∆r)

∑
G

Cn,k,Ge
iG·r = eiΘk·∆r

∑
G

Cn,Θk,Ge
iG·(Θr+∆r)

∑
G

Cn,k,Ge
iG·r = eiΘk·∆r

∑
G

Cn,Θk,ΘGe
iΘG·(Θr+∆r)

∑
G

Cn,k,Ge
iG·r =

∑
G

Cn,Θk,ΘGe
iG·reiΘ(k+G)·∆r

Cn,k,G = eiΘ(k+G)·∆rCn,Θk,ΘG (28)

This simple relationship allows a pseudo wavefunction at k to be quickly mapped to a pseudo
wavefunction at Θk. Similarly, if time reversal symmetry holds:

Cn,k,G = C∗n,−k,−G (29)

The complex conjugation occurs because time reversal is an antilinear operator.

2.3 The Band-Shifting Correction for Point Defect Calculations

For the purpose of benchmarking, a very basic perturbative band shifting method is presented
here and referred to as the “Projection Shift.” Because the perturbative band shifting correction
adjusts single-particle energy levels, it is nontrivial to decide the correction to the total energy,
even for a simplified correction like Equation 11. For this work, it is assumed that the shifted
single-particle energies en,k given by Equation 11 only hold if en,k is in the band gap (i.e. it is
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a defect level). Otherwise, the energy shifts entirely with the set of bands in which it is located
(valence or conduction). This is reasonable because Equation 11 should only be applied to defect
levels, but all of the bands shift in energy going from the GGA to hybrid level of theory.

To avoid counting energy shifts from occupied valence bands, a reference energy NV B,X,0∆EV BM
is chosen, where NV B,X,0 is the number of electrons in the valence band of the neutral charge state
of the defect. Note that this reference energy does not affect transition levels because transition
levels are only dependent on the energy difference between charge states. This method prevents
large double counting errors for the Coulomb energy while accounting for the energy shifts of the
valence band, conduction band, and defect levels.

Ecorr,shift =−NV B,X,0∆EV BM +
∑
n∈BG

∆en (30)

+
∑

n∈V B,k
ωkfn,k∆EV BM +

∑
n∈CB,k

ωkfn,k∆ECBM

∆en =
∑
k

ωkfn,k(cn,k∆ECBM + vn,k∆EV BM )

ωk are k-point weights and fn,k are occupations. BG, VB, and CB are the band gap, valence
bands, and conduction bands at the hybrid level of theory, respectively, and bands are assigned
to them after their average energy over all k-points and spins is shifted by ∆en. The averaging is
performed because defect levels do not have dispersion in the true physical band structure. Spin
polarization can be taken into account but does not significantly affect the results for the set of
defects studied. This method was used for benchmarking the effectiveness of the perturbative band
shifting correction.

3 Implementation

Pawpyseed is written in Python and C. All user interface is written in Python, and computationally
expensive tasks are performed by using the ctypes package to call functions from a C library compiled
during installation. The Math Kernel Library is used for Fast Fourier transforms (FFTs), and
OpenMP is used to implement shared memory parallelization. Pseudo wavefunctions are read from
VASP WAVECAR files using a method based on the WaveTrans program [15], and data about
augmentation regions can be read from VASP pseudopotential (POTCAR) files. In addition to the
core Python library, pawpyseed relies heavily on NumPy and SciPy [16] (for numerical operations),
pymatgen [11] (for storing and manipulating structures, reading VASP input and output files, and
performing symmetry analysis), and Matplotlib [17] (for visualization).

The rest of this section presents the numerical methods used to calculate overlap operators in
the form of Equation 19. Table 1 gives detailed runtime scaling for each portion of the routine.

3.1 Overlap of Pseudo Wavefunctions (O0)

The pseudo wavefunction is a summation of plane waves,

ψ̃nk(r) =

√
1

V
eik·r

∑
G

CnkGe
iG·r (31)

so the overlap between two pseudo wavefunctions per unit cell can be written as

O0 = 〈ψ̃n1k1 |ψ̃n2k2〉 = δk1,k2

∑
G

C∗n1k1GCn2k2G (32)
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Table 1: Runtime scaling functions for each component of the code and definitions for shorthand
symbols to express runtime. Approximate scales with the number of electrons are also shown.

Computational Task Θ Frequency*

O0 BKSW ∼ n2 per band
OM BKSNP ∼ n2 per band

OR and OS BKSNP ∼ n2 per band
ON BKSNP ∼ n2 per band

〈p̃i|ψ̃nk〉 BKSF log(F ) ∼ n2log(n) per structure

(〈φi| − 〈φ̃i|) |ψ̃nk〉 BKSF log(F ) ∼ n2log(n) per structure
spherical Bessel transform partial waves EPGlog(G) ∼ 1 per structure
projections for overlapping aug. spheres NP 2Glog(G) ∼ n per structure pair

Symbol Definition

B number of bands
E number of elements
F size of FFT grid
G size of partial wave radial grid
K number of k-points
N number of sites**
P number of projector functions
S number of spin states
W number of plane waves
n number of electrons (approximate scaling)

*The frequency refers to how often the routine is called. “Per band” indicates that the routine runs
once every time a band from one structure is projected onto all the bands of a basis structure. “Per
structure” indicates a setup routine used to set up the wavefunctions for a structure. “Per structure
pair” is a setup routine run once for each pair of structures for which the overlap operators are to
be calculated.
**Number of sites flexibly refers to the number of sites relevant to the calculation, which worst-case
scales with the total number of sites in the structure. For example, calculating OM and ON only
require the sites in sets MRS and NRS , respectively.

3.2 Concentric Augmentation Spheres (OM)

Integrals of the type 〈ψ̃Rn1k|p̃almε1〉 between a pseudo wavefunction and projector function are
evaluated using a real-space FFT grid, as with VASP with LREAL=TRUE [14, 18–21]. Integrals of
the type 〈φalmε1 |φalmε2〉 between partial waves are evaluated by simple radial integration. This is
possible because the augmentation spheres are concentric, so the spherical harmonics for the partial
waves are orthonormal.

3.3 Partial Waves Overlapping with Pseudo Wavefunction (OR, OS)

These integrals require projecting a smoothly varying pseudo wavefunction onto a rapidly varying
AE partial wave. Performing such projections in reciprocal space is computationally expensive
because of the large frequency components. Taking advantage of the orthogonality of plane waves,
this projection can be done in real space. Since a plane wave can be expanded around an arbitrary
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origin in space (to a phase factor) using Rayleigh expansion:

eik·r = 4π
∞∑
l=0

l∑
m=−l

iljl(kr)Y
m∗
l (k̂)Y m

l (r̂) (33)

Partial waves can be Fourier transformed into reciprocal space by evaluating overlap integrals with
spherical Bessel functions. This is done using the O(NlogN) NUMSBT algorithm developed by
Talman [22]. Then, all frequency components greater than the 1-dimensional FFT grid density
can be set to 0 because those plane-waves are orthogonal to any component of the FFT grid. The
“filtered” partial waves can then be transformed back into real space, also using the NUMSBT
algorithm. This results in smooth partial waves for which (〈φi| − 〈φ̃i|) |ψ̃nk〉 can be evaluated in
real space.

3.4 Partial Wave Overlap on Non-Orthogonal Augmentation Spheres (ON)

The ON term appears similar to the OM term, except that the integrals (〈φi| − 〈φ̃i|)(|φj〉 − |φ̃j〉)
contain partial waves centered at different sites. However, transforming these partial waves into
reciprocal space using the spherical Bessel transform allows the overlap integrals to be evaluated
using Equation 47 in Talman’s NUMSBT paper [22]. Evaluating this equation requires the Gaunt
coefficients, which are calculated and stored using SymPy [23].

4 Computational Details

4.1 DFT Calculations

All DFT calculations were performed using the VASP code [18–21] with the Perdew-Burke-Ernzerhof
(PBE) generalized gradient approximation (GGA) functional [24, 25] and the PAW method [13, 14].
For hybrid functional bulk calculations, the Heyd-Scuseria-Ernzerhof (HSE) method [26] was used
with the standard HSE06 [27] tuning parameters. All k-point grids used were Monkhorst-Pack (MP)
grids [28], and all calculations were performed with symmetry off to allow the local environment of
the defect to relax out of its initial symmetry.

The boron, phosphorus, copper, and sulfur substitutionals and single vacancy were embedded in
a 216-atom supercell of silicon using PyCDT [8]. PyCDT was also used to generate charge states
for analysis. Energy convergence tests were performed with the number of k-points. For the total
cohesive energy of the bulk crystal, a difference of 0.01 eV (5× 10−5 eV/atom) was found between
a 2x2x2 and 3x3x3 k-point mesh for the bulk supercell, so a 2x2x2 k-point mesh was used. The
energy cutoff was set to 520 eV. An ionic relaxation and total energy calculation were performed for
each defect and charge state. The static dielectric constant was also calculated for the bulk silicon
crystal using VASP and found to be 12.52. For the silicon vacancy, even with symmetry turned
off, the structure does not relax to a stable state because it is caught in a metastable minimum.
The final symmetry is different for each charge state, but as an example, the neutral defect has
a tetragonally distorted structure with D2d symmetry [29]. To attain the correct structure, the
positions of the four atoms nearest the vacancy site are perturbed manually to break the structure
from the metastable minimum and break symmetry before the calculation is run. This process can
also be done in an automated fashion and therefore is compatible with a high-throughput computing
workflow. To calculate DFT and hybrid band edges, a DFT calculation was run on a single 2-atom
silicon primitive cell with a 7x7x7 k-point mesh, once with the GGA functional and once with the
HSE06 functional.
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4.2 Correction Methods

The formation energies and transition levels were calculated using PyCDT [8]. Using the PyCDT
utilities in pymatgen [11], several combinations of charge corrections were tested for prediction of
formation energies and transition levels, which are elaborated below. The new code presented here,
pawpyseed, was used to perform the simplified perturbative band shifting correction of Equation
30. Visualization of results was performed using PyCDT. All of the correction schemes tested are
described below. Note that for all schemes that involve band filling or band shifting, the GGA band
edges are determined from the primitive cell DFT calculation with a 7x7x7 MP mesh because the
bulk supercell calculation with 2x2x2 mesh does not sample the VBM and CBM.

Freysoldt Correction Only No band shifting or band filling is attempted for this method. Only the
electrostatic Freysoldt Correction is used. All other correction schemes add terms to this one.

Freysoldt and Band Filling In addition to the Freysoldt correction, the band filling correction is
used to shift electrons in the conduction band down to the (GGA) conduction band minimum and
holes in the valence band to the (GGA) valence band maximum.

Freysoldt, Band Filling, 100% Shift On top of the Freysoldt and Band Filling corrections, the
100% shift method discussed in the introduction is used.

Freysoldt, Band Filling, Projection Shift This correction makes use of pawpyseed to attempt a more
sophisticated band shifting correction. Equation 30 is used as described in Section 2.3 to correct
each energy level and extrapolate these single-particle corrections to a total energy correction.

5 Results

5.1 Defect Transition Level Predictions

This section presents and discusses the predicted transition levels of the phosphorus, boron, copper,
and sulfur substitutionals and single vacancy in silicon. Plots of the formation energies as a function
of Fermi level EF are shown for all correction schemes in Figure 2. Only the transition levels are
discussed in detail below; analysis of correction method performance for formation energy prediction
is left for future work. For reference, the GGA band gap calculated in this study is 0.61 eV. The
HSE06 band gap is 1.19 eV and is denoted with black dotted lines on the formation energy plots.

Boron Substitutional The boron substitutional is a shallow single acceptor with an experimental
transition level at 0.045 eV above the VBM [30]. It is commonly used as a dopant to make p-n
junctions for computer chips and photovoltaics. Because boron is such a shallow acceptor, the
electron density of the defect level will be delocalized beyond the 216-atom supercell used, which will
decrease the accuracy of the supercell method DFT calculation. However, the boron substitutional
is a good benchmark to observe the qualitative behavior of the correction methods, particularly
band filling and band shifting. The Freysoldt correction only method (Figure 2a) predicts a slightly
negative transition level (-0.02 eV). The band filling correction increases this transition level to 0.14
eV, which is unchanged by the band shifting corrections.

Phosphorus Substitutional The phosphorus substitutional is a shallow single donor with an ex-
perimental transition level at 0.045 eV below the CBM [30]. As with boron, it is often used in
electronics applications. Because the extra electron in the phosphorus defect is delocalized, the
supercell method is not expected to give accurate results. However, attempting the band shifting
correction on a shallow level provides a simple benchmark to ensure that the method can shift a
shallow donor with the conduction band edge. This is achieved by both the 100% shift correction
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(a) Freysoldt Correction Only (b) Freysoldt and Band Filling

(c) Freysoldt, Band Filling, 100% Shift (d) Freysoldt, Band Filling, Projection Shift

Figure 2: Formation energy and transition level diagrams for the studied defects in Silicon, with
different sets of corrections applied to each. The transition levels (indicated in the diagrams by star
symbols) occur at the Fermi levels for which two charge states have equal formation energy. The
2x2x2 Monkhorst-Pack k-point mesh was used.
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(Figure 2c) and the projection shift correction (Figure 2d). The transition level is 1.08 eV (0.11 eV
below the CBM) for the 100% shift and for the projection shift.

Copper Substitutional Copper is a technologically important impurity in silicon because it increases
leakage current in transistor devices and is common in semiconductor processing environments
[31–33]. It exhibits both deep acceptor and deep donor character, with experimental transition
levels at 0.207 (+/0) and 0.478 (0/-) eV above the VBM and 0.167 (-/--) eV below the CBM [34].
High-resolution Laplace-transform DLTS gave transition levels for +/0 and 0/- at 0.225 and 0.430
eV [35]. Using the HSE06 functional, Sharan, Gui, and Janotti predicted transition levels for the
copper substitutional at 0.20 eV for +/0, 0.54 eV for 0/-, and 0.97 eV for -/-- [31].

The Freysoldt only and Freysoldt plus band filling methods give good predictions of the copper
levels relative to the size of the band gap. The band shifting corrections give relatively good
extrapolations of these levels to the true band gap (0.44 and 0.65 eV for 100% shift and 0.28 eV
and 0.38 eV for the projection shift), with the 100% shift overestimating the transition levels and
the projection shift underestimating the difference between the levels.

Sulfur Substitutional Sulfur is a deep donor with a level 0.32 eV below the CBM (+/0) and a level
0.51 eV above the VBM (++/+) [30]. The Freysoldt correction significantly underestimates the
++/+ level, placing it at 0.12 eV, which makes it appear like a shallow defect. In addition, the
0/- and -/-- transitions are incorrectly placed in the true band gap (though not the GGA band
gap) at 0.83 and 0.97 eV. However, the ++/+ and +/0 levels are approximately the correct energy
below the GGA conduction band minimum (Eg,GGA=0.612 [36]). Band filling corrections do not
significantly affect the results.

With band shifting, agreement is found with experiment to about 0.1 eV (0.49 and 0.78 eV for
100% shift and 0.64 and 0.95 eV for projection shift), with slightly lower error for the 100% shift.
The corrections both increase the 0/- and -/-- levels to 1.17/1.18 eV and 1.25 eV. The 0/- transition
is 0.02 and 0.01 eV below the CBM for the 100% shift and projection shift, respectively, which is
close enough to infer the instability of the -1 charge state.

Single Vacancy The single vacancy in silicon is known to be a donor with negative-U behavior
which makes the +/0 transition level lower than the ++/+ transition level [37]. The +/0 transition
is at 0.05 eV, and the ++/+ transition is at 0.13 eV [37]. LDA fails to capture this negative-U
behavior [29, 38]. GGA was able to capture the negative-U behavior in one study [29]. The
correction method used in that study chose ∆EV BM to reproduce the ++/+ transition level, which
is not a reliable strategy for predicting properties of previously unstudied defects. However, the
choice of ∆EV BM does not affect the difference between transition levels, so the negative-U behavior
should be reproducible. The study did not use band filling or shifting corrections, so the behavior
should be reproducible with only the Freysoldt correction. This is not the case for the current set of
calculations, however (see Figure 2a), suggesting inadequate DFT parameters. Wright [29] used a
5x5x5 k-point mesh for the 215-atom supercell. This draws attention to the fact that parameters
sufficient for total energy convergence in the bulk supercell are not necessarily sufficient for total
energy convergence of the defect. To avoid errors like this, a high-throughput workflow would need
to do convergence test calculations for the total energy of each defect and charge state, which
is likely too computationally expensive for some applications. Interestingly, the projection shift
correction method predicts negative-U behavior for the single vacancy, but the ++/+ and +/0
levels are incorrectly predicted to be negative.

The silicon vacancy also illustrates one of the limitations of the 100% shift correction. This
method requires distinguishing valence and conduction band states from defect levels, and then
shifts the valence and conduction states by a significant amount (in this case, -0.36 eV for the VBM
shift and 0.22 eV for the CBM shift). Therefore, a small numerical error in the energy eigenvalues
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Figure 3: vD and cD for states near the band gap of several neutral defects. The upper portion of
the plot shows proportion valence (blue) and proportion conduction (red). The lower part shows the
energy levels at the k-points and spin states of each band. The color of the energy levels corresponds
to the occupation, with the plasma color scale provided in Matplotlib [17] used to clearly illustrate
partial occupancies. Dark blue levels have occupancy 1 and yellow levels have occupancy 0. The
GGA band gap of 0.61 eV is denoted with the black lines.

or the Freysoldt potential alignment (Equation 2) can change the transition level significantly by
changing whether a state is classified as a conduction, valence, or defect state. This appears to
be the case with the silicon vacancy, where the Si ++/+ level is shifted down to -0.47 eV, 0.33
eV below its value with the Freysoldt correction only, because the +2 charge state contains an
unoccupied level just below the VBM (Figure 4).

5.2 Understanding Energy Corrections Using Level Projections

Figure 3 shows the valence band character vD and conduction band character cD for levels near
the band gap of the neutral copper, sulfur, and phosphorus substitutionals. Note that because the
bulk basis set is finite and therefore incomplete, vD + cD can be less than 1. The missing character,
represented by white space between the red and blue bars in Figure 3, is due to the difference in
the basis set between the bulk and defect. The defect contains different atomic wavefunctions at
different coordinates than the bulk, and the set of plane-waves incorporated into the bands is not
exactly the same in the two structures. For example, the bulk silicon basis contains no d states, so
the white space in the Cu substitutional projection diagram might be due to d state character.

These diagrams are useful for reaching qualitative conclusions about the chemistry of the point
defects. For example, in the neutral and +1 sulfur substitutional, the occupied defect level is
derived mainly from the conduction band. This indicates that higher-level of theory correlation
effects could raise the energy of this level and therefore raise the transition levels compared to the
Freysoldt correction-only GGA prediction. Indeed, the basic Freysoldt correction scheme significantly
underestimates the sulfur transition levels, and this underestimation is remedied by both band
shifting corrections.

In addition, the near-100% conduction character of the phosphorus substitutional level makes
sense given how shallow the defect is. The strong valence character of the copper defect levels
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Figure 4: vD and cD for states near the band gap of several charge states of the silicon vacancy. The
highest occupied band of the neutral vacancy has a larger vD than the same band in the positive
charge states, and this band is lower in energy than in the positive charge states.

confirm previous conclusions that these levels are not derived from the d shell, but rather ligand
orbitals [31], since the d orbitals are not contained in the bulk silicon basis set.

Figure 4 shows the valence-conduction projection diagrams for the 0, +1, and +2 charge states
of the silicon vacancy. When band -2 is unoccupied, it has vC = 0.82. When it becomes occupied
in the 0 charge state, is has vC = 0.95. This suggests that the tetragonal distortion of the neutral
vacancy allows this band to adopt more valence-type bonding character, which stabilizes it. This is
consistent with the negative-U behavior in the silicon vacancy, which causes the +/0 level to be
lower than the ++/+ level.

The energy level diagram for the +2 state illustrates why the ++/+ transition level is 0.47 eV
below the VBM; the lowest unoccupied state is just slightly below the VBM, so that empty state
gets treated as a hole and shifted with the VBM, which inaccurately increases the energy of the +2
state.

5.3 Γ-centered K-point Mesh DFT Calculations

Because the 2x2x2 k-point mesh used in this study does not sample the band edges of silicon,
a second set of calculations was performed in which the 2x2x2 mesh was Γ-centered. However,
this change does not result in significantly more accurate transition level and formation energy
predictions. See Figure 5 for formation energy plots for the band shifting corrections. This suggests
that the errors in transition levels in this study are not due simply to the k-point mesh generation
method. The density of the k-point mesh may be too low for some systems (such as the vacancy),
and the limitations of the GGA functional also limit the accuracy of the transition level predictions.

5.4 Quantitative Comparison of 100% Shift and Projection Shift

Tables 2 and 3 compare the energies of experimentally observed transition levels in the studied
defects to the theoretical predictions in this work. The comparison is performed for the shifted
Monkhorst-Pack k-point mesh calculations (Table 2) and the Γ-centered k-point mesh calculations
(Table 3) to investigate the effects of the corrections for different choices of k-point sampling. To
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(a) Freysoldt Correction Only (b) Freysoldt and Band Filling

(c) Freysoldt, Band Filling, 100% Shift (d) Freysoldt, Band Filling, Projection Shift

Figure 5: Formation energy and transition level diagrams for the studied defects in Silicon. As
opposed to Figure 2, the 2x2x2 Γ-centered k-point mesh was used.
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Table 2: Errors of predicted transition levels in eV for the DFT calculations performed with MP
k-point meshes. Format: “level in eV (error as percentage of band gap).”

Transition Level Expt. Freysoldt Only Freysoldt/B.F. 100% Shift Projection Shift

Vac ++/+ 0.13 [37] -0.14 (-34%) -0.12 (-31%) -0.47 (-51%) -0.04 (-15%)
Vac +/0 0.05 [37] -0.02 (-8%) -0.02 (-7%) 0.34 (24%) -0.09 (-12%)
P +/0 1.07 [30] 0.66 (12%) 0.50 (-14%) 1.09 (-5%) 1.09 (-5%)
B 0/- 0.04 [30] -0.02 (-7%) 0.14 (19%) 0.14 (8%) 0.14 (8%)

Cu +/0 0.23 [35] 0.09 (-6%) 0.09 (-6%) 0.44 (17%) 0.28 (4%)
Cu 0/- 0.43 [35] 0.29 (9%) 0.29 (9%) 0.65 (16%) 0.38 (-7%)
Cu -/-- 0.95 [34] 0.65 (20%) 0.65 (20%) 1.01 (-1%) 0.77 (-20%)

S ++/+ 0.51 [30] 0.12 (-26%) 0.12 (-26%) 0.49 (-5%) 0.64 (8%)
S +/0 0.80 [30] 0.42 (-2%) 0.42 (-2%) 0.78 (-6%) 0.95 (9%)

MAE 14% 15% 15% 9%
MAE (excl. vac) 12% 14% 8% 9%

Table 3: Errors of predicted transition levels in eV for the DFT calculations performed with
Γ-centered k-point meshes. Format: “level in eV (error as percentage of band gap).”

Transition Level Expt. Freysoldt Only Freysoldt/B.F. 100% Shift Projection Shift

Vac ++/+ 0.13 [37] -0.13 (-32%) -0.09 (-26%) -0.25 (-33%) -0.01 (-13%)
Vac +/0 0.05 [37] -0.00 (-5%) -0.00 (-5%) 0.34 (24%) -0.08 (-11%)
P +/0 1.07 [30] 0.50 (-15%) 0.50 (-15%) 0.86 (-24%) 1.08 (-6%)
B 0/- 0.04 [30] 0.08 (9%) 0.12 (15%) 0.12 (6%) 0.12 (6%)

Cu +/0 0.23 [35] 0.05 (-12%) 0.07 (-8%) 0.06 (-15%) 0.14 (-8%)
Cu 0/- 0.43 [35] 0.32 (14%) 0.32 (14%) 0.68 (19%) 0.42 (-4%)
Cu -/-- 0.95 [34] 0.63 (18%) 0.63 (18%) 0.99 (-2%) 0.76 (-21%)

S ++/+ 0.51 [30] 0.10 (-29%) 0.10 (-29%) 0.46 (-7%) 0.62 (6%)
S +/0 0.80 [30] 0.43 (-1%) 0.43 (-1%) 0.78 (-6%) 0.98 (11%)

MAE 15% 15% 15% 9%
MAE (excl. vac) 14% 14% 11% 9%

compare the theoretical transition levels to the experimental levels, each transition level is divided
by the band gap for the respective level of theory. This means non-band-shifted method predictions
get divided by the GGA band gap of 0.612 eV, band-shifted predictions by the HSE06 band gap
of 1.192 eV, and experimental predictions by the experimental band gap of 1.12 eV. Errors are
then reported as the difference between the percentage of the band gap of the theoretical and
experimental levels. Sze and Ng’s compilation of impurity levels is used for the boron, phosphorus,
and sulfur substitutionals [30]. The copper data is taken from [35] and [34] because the levels are
assigned and the data is more recent. The vacancy data is taken from [37]. Below is a list of notable
performance differences between the methods.

• On average, only the projection shift method outperforms the standard Freysoldt correction
when the vacancy is included, but the 100% shift is also an improvement when the vacancy is
ignored.

• The Freysoldt correction errors are not systematically positive or negative. Performing a simple
VBM shift of the Fermi level increases all transition levels by the same amount (assuming
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the VBM shift is negative), so the VBM shift alone is inadequate to correct the errors of the
Freysoldt correction.

• The projection shift underestimates the copper -/-- level compared to the 100% shift.

• The 100% shift gives poor transition level predictions for the vacancy because the lowest
unoccupied orbital is incorrectly assigned as a hole.

• The projection shift predicts negative-U behavior for the silicon vacancy ++/+ and +/0 levels
(though the energies are unphysically negative).

• The 100% shift overestimates the copper +/0 and 0/- levels

• The phosphorus donor level is slightly below the conduction band in the Γ-centered calculation,
so it is not shifted with the conduction band by the 100% shift method. This results in a large
underestimation of the transition level, which is remedied by the projection shift method.

6 Discussion

6.1 Effectiveness of Band Filling and Band Shifting Corrections

It should be noted that the set of defects studied here is quite small, and only one system is studied.
The purpose of this work is to identify possible strengths and drawbacks of the different correction
methods and present utilities to perform these corrections in a standardized way. The data collected
is certainly not adequate to draw strong general conclusions about any correction method, and no
attempt is made to do so.

For the set of defects studied here, the band shifting correction methods provide modest decreases
in the average error of the transition levels. The 100% shift method improves most transition
levels but produces large errors for the vacancy because an unoccupied defect level in the +2 state
gets labeled as a hole in the valence band and shifted in energy. The projection shift gives a net
decrease in transition level errors compared to all other methods, but it gives higher errors than
other methods for some levels. The 100% shift method has the advantage of simplicity and low
computational cost, but it also requires identifying valence band and conduction band states in
order to shift energies. As demonstrated by the ++/+ transition in the vacancy and the Γ-centered
calculation of the phosphorus substitutional, this can cause significant errors. The projection shift
method is more computationally expensive but can shift levels in the band gap as well as valence
and conduction states.

The projection of defect levels onto conduction and valence bands does not provide complete
information about how the energy of the defect level will shift when attempting to extrapolate to a
more accurate band structure from DFT. One reason for this is that the chemical environment of
an electron in a given state is significantly different in the defect than in the bulk, so the correction
to the XC term could be very different. One way to account for the local chemical environment
around the defect is to partly base the shift in energy of defect levels on the projection onto local
atomic wavefunctions around the defect. For example, the s-type defect states around the copper
substitutional have mainly valence character (80-90%), which results in the perturbative correction
presented here shifting the energy of the levels down, which makes the correction less accurate
for the -/-- level. However, one might predict that additional repulsion by the d states in copper
makes the XC energy less negative than expected from the XC energy of the bulk. If the XC energy
correction included a contribution from the XC correction for atomic states of copper, the accuracy
of the correction might be improved.
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6.2 Other Applications of Pawpyseed

Pawpyseed gives a user easy access to the all electron (AE) wavefunctions from the PAW method,
which opens up the possibility that it can be used as a general tool for analyzing PAW DFT
wavefunctions. The following are some potential applications of the formalism developed in this
paper.

Wavefunction Visualization Pawpyseed currently contains utilities which can be used to visualize
the AE wavefunctions of a VASP calculation. The user can select either the charge density of a
given state or the wavefunction itself (with one output file each for the real and imaginary parts).
The user can also choose real-space grid dimensions for printing charge density files, which enables
printing AECCAR-style files. All volumetric data file output from pawpyseed is formatted like
VASP volumetric data for easy visualization in tools like VESTA [39].

Population Analysis Mulliken population analysis [40] is a method used in quantum chemistry
to assign partial charges to atoms for analysis purposes. This method, as well as more modern
methods derived from it [41], require projecting wavefunctions of a structure onto localized atomic
wavefunctions. Such tools are common in localized basis set codes but not in plane-wave basis set
codes. The tools in pawpyseed can be extended to perform population analysis on plane-wave DFT
output.

Wavefunction Type Conversion Some codes only support certain types of wavefunction formats.
For example, some GW codes, such as BerkeleyGW, require as input the wavefunctions from
norm-conserving (NC) pseudopotential calculations [42]. The framework in pawpyseed can be used
to implement a mapping between PAW wavefunctions and norm-conserving (NC) or ultrasoft (US)
pseudopotential wavefunctions.

Orbital Localization Certain orbital localization procedures, such as the SCDM and SCDM-
k methods [43, 44], are still in need of efficient open-source implementations. This could be
conveniently provided by pawpyseed by using the existing computational framework, as it already
supports reading, real-space projection, and visualization of PAW wavefunctions.

Optical Property Calculations When a solid or molecule is electronically excited by a photon, the
ionic structure can undergo a relaxation in addition to the electronic structure. Pawpyseed’s utilities
can be extended to evaluate the electric field operator matrix elements between wavefunctions in
the ground state and excited state structures.

General Nonlinear Operators The algorithm developed in this paper is sufficient for the evaluation
of general nonlocal operators in the PAW formalism, so applications which require the evaluation of
nonlocal operators can use the framework developed in pawpyseed.

7 Summary and Conclusions

An open-source code has been presented which can calculate the overlap between PAW wavefunctions
from different structures. This utility has been used to implement a perturbation theory-based
energy correction for charged point defect DFT calculations. There are multiple ways to derive
a band shifting correction from the general perturbation theory approach, and the utilities in
pawpyseed enable the evaluation of overlap operators necessary for these approaches, which provides
other researchers with a fast and easy way to develop new corrections. The parallelization and other
optimizations in pawpyseed execute the computationally expensive overlap operator evaluations
quickly. The framework developed in pawpyseed is capable of evaluating general nonlinear operators,
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and development plans include expanding pawpyseed to support utilities not available in other PAW
codes and post-processing packages.

Pawpyseed, PyCDT, pymatgen, and VASP were used to perform a benchmarking study of
several correction schemes for charged defect calculations, including the new projection shift method
presented here. The results suggested that the projection shift method improves the average error
of the transition levels for the studied defects. The 100% shift method improves most transition
levels compared to the Freysoldt-only correction but sometimes produces large errors.

Future development plans for pawpyseed include improving the precision of overlap operator
evaluations, particularly the OR and OS terms, which currently limit the precision of the overlap
operator evaluation to 10−2. Future work on the perturbative band shifting method will focus on
accounting for XC effects from changes to the local chemical environment introduced by defects.
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